砖运行时为6.0毫升(不支持)

2019年10月砖公布的这张照片。

砖6.0运行时机器学习为机器学习和数据提供了一个准备好了环境科学的基础上砖运行时的6.0(不支持)。砖运行时毫升含有许多流行的机器学习库,包括TensorFlow PyTorch Keras, XGBoost。它还支持使用Horovod分布深度学习培训。

更多信息,包括指令创建砖集群运行时毫升、明白了介绍砖运行时机器学习

新功能

砖砖的运行时6.0毫升之上6.0运行时。有什么新信息的砖6.0运行时,看到的砖运行时的6.0(不支持)发行说明。

查询MLflow实验数据大规模使用新的MLflow火花数据源

火花数据源MLflow实验现在提供了一个标准的API加载MLflow实验运行数据。这使得大规模使用DataFrame api MLflow实验数据的查询和分析。对于一个给定的实验中,DataFrame包含run_ids,度量标准,参数,标签,start_time, end_time,地位,和artifact_uri工件。看到MLflow实验

改进

  • Hyperopt GA

    Hyperopt砖是现在通常可用。显著的改进自公共预览版包括支持MLflow登录引发工人,正确处理PySpark广播变量,以及一个新的指南使用Hyperopt模型选择。我们也固定日志消息的小错误,错误处理,UI,使我们的文档更多读者友好。详情,请参阅Hyperopt文档

    我们已经更新数据砖日志Hyperopt实验,这样你可以现在日志一个自定义指标在Hyperopt运行期间通过度量的mlflow.log_metric函数(见log_metric)。这是有用的日志如果你想自定义指标除了损失,登录时默认情况下hyperopt.fmin函数被调用。

  • MLflow

    • 添加MLflow Java客户机1.2.0

    • MLflow现在作为一个顶级推广图书馆

  • 升级机器学习库

    • Horovod升级0.16.4 0.18.1

    • MLflow升级1.0.0 1.2.0

  • 蟒蛇分布从5.2.0升级到2019.03

删除

  • 砖毫升模型出口被移除。使用MLeap导入和导出模型。

  • Hyperopt图书馆,以下属性hyperopt.SparkTrials删除:

    • SparkTrials.successful_trials_count

    • SparkTrials.failed_trials_count

    • SparkTrials.cancelled_trials_count

    • SparkTrials.total_trials_count

    他们替换为以下功能:

    • SparkTrials.count_successful_trials ()

    • SparkTrials.count_failed_trials ()

    • SparkTrials.count_cancelled_trials ()

    • SparkTrials.count_total_trials ()

系统环境

砖的系统环境运行时6.0毫升不同于砖运行时的6.0如下:

下面的章节列表库包含在砖运行时的6.0毫升,不同于那些包含在砖6.0运行时。

Python库

砖运行时6.0毫升使用Conda Python包管理,包括许多流行毫升包。以下部分描述了Conda砖运行时环境6.0毫升。

Python 3对CPU集群

的名字:databricks-ml渠道:- - - - - -pytorch- - - - - -违约依赖关系:- - - - - -_libgcc_mutex = 0.1 =主要- - - - - -_py-xgboost-mutex = 2.0 = cpu_0- - - - - -_tflow_select = tripwire = mkl- - - - - -absl-py =是0.7.1 = py37_0- - - - - -asn1crypto = 0.24.0 = py37_0- - - - - -阿斯特= 0.8.0 = py37_0- - - - - -backcall = 0.1.0 = py37_0- - - - - -补丁= 1.0 = py_2- - - - - -bcrypt = 3.1.6 = py37h7b6447c_0- - - - - -布拉斯特区= 1.0 = mkl- - - - - -宝途= 2.49.0 = py37_0- - - - - -boto3 = 1.9.162 = py_0- - - - - -botocore = 1.12.163 = py_0- - - - - -c-ares = 1.15.0 = h7b6447c_1001- - - - - -ca证书= 2019.1.23 = 0- - - - - -certifi = 2019.3.9 = py37_0- - - - - -cffi = 1.12.2 = py37h2e261b9_1- - - - - -chardet = 3.0.4 = py37_1003- - - - - -单击= 7.0 = py37_0- - - - - -cloudpickle = 0.8.0 = py37_0- - - - - -彩色光= 0.4.1 = py37_0- - - - - -configparser = 3.7.4 = py37_0- - - - - -密码= 2.6.1 = py37h1ba5d50_0- - - - - -周期计= 0.10.0 = py37_0- - - - - -cython = 0.29.6 = py37he6710b0_0- - - - - -decorator = 4.4.0 = py37_1- - - - - -docutils = 0.14 = py37_0- - - - - -entrypoints = 0.3 = py37_0- - - - - -et_xmlfile = 1.0.1 = py37_0- - - - - -瓶1.0.2 = = py37_1- - - - - -freetype的= 2.9.1 = h8a8886c_1- - - - - -未来= 0.17.1 = py37_0- - - - - -恐吓= 0.2.2 = py37_0- - - - - -gitdb2 = 2.0.5 = py37_0- - - - - -gitpython = 2.1.11 = py37_0- - - - - -grpcio = 1.16.1 = py37hf8bcb03_1- - - - - -gunicorn = 19.9.0 = py37_0- - - - - -h5py = 2.9.0 = py37h7918eee_0- - - - - -hdf5 = 1.10.4 = hb1b8bf9_0- - - - - -html5lib = 1.0.1 = py_0- - - - - -icu = 58.2 = h9c2bf20_1- - - - - -idna = 2.8 = py37_0- - - - - -intel-openmp = 2019.3 = 199- - - - - -ipython = 7.4.0 = py37h39e3cac_0- - - - - -ipython_genutils = 0.2.0 = py37_0- - - - - -itsdangerous = 1.1.0 = py37_0- - - - - -jdcal = 1.4 = py37_0- - - - - -绝地= 0.13.3 = py37_0- - - - - -jinja2 = 2.10 = py37_0- - - - - -jmespath = 0.9.4 = py_0- - - - - -jpeg = 9 b = h024ee3a_2- - - - - -keras = 2.2.4 = 0- - - - - -keras-applications = 1.0.8 = py_0- - - - - -keras-base = 2.2.4 = py37_0- - - - - -keras-preprocessing = 1.1.0 = py_1- - - - - -kiwisolver = 1.0.1 = py37hf484d3e_0- - - - - -krb5 = 1.16.1 = h173b8e3_7- - - - - -libedit = 3.1.20181209 = hc058e9b_0- - - - - -libffi = 3.2.1 = hd88cf55_4- - - - - -libgcc-ng = 8.2.0 = hdf63c60_1- - - - - -libgfortran-ng = 7.3.0 = hdf63c60_0- - - - - -libpng = 1.6.36 = hbc83047_0- - - - - -libpq = 11.2 = h20c2e04_0- - - - - -libprotobuf = 3.8.0 = hd408876_0- - - - - -libsodium = 1.0.16 = h1bed415_0- - - - - -libstdcxx-ng = 8.2.0 = hdf63c60_1- - - - - -libtiff = 4.0.10 = h2733197_2- - - - - -libxgboost = 0.90 = he6710b0_0- - - - - -libxml2 = 2.9.9 = hea5a465_1- - - - - -libxslt = 1.1.33 = h7d1a2b0_0- - - - - -llvmlite = 0.28.0 = py37hd408876_0- - - - - -lxml = 4.3.2 = py37hefd8a0e_0- - - - - -尖吻鲭鲨= 1.0.10 = py_0- - - - - -减价= 3.1.1 = py37_0- - - - - -markupsafe = 1.1.1 = py37h7b6447c_0- - - - - -mkl = 2019.3 = 199- - - - - -mkl_fft = 1.0.10 = py37ha843d7b_0- - - - - -1.0.2 mkl_random = = py37hd81dba3_0- - - - - -模拟= 3.0.5 = py37_0- - - - - -ncurses = 6.1 = he6710b0_1- - - - - -networkx = 2.2 = py37_1- - - - - -忍者= 1.9.0 = py37hfd86e86_0- - - - - -鼻子= 1.3.7 = py37_2- - - - - -numba = 0.43.1 = py37h962f231_0- - - - - -numpy = 1.16.2 = py37h7e9f1db_0- - - - - -numpy-base = 1.16.2 = py37hde5b4d6_0- - - - - -olefile = 0.46 = py37_0- - - - - -openpyxl = 2.6.1 = py37_1- - - - - -openssl = 1.1.1b = h7b6447c_1- - - - - -熊猫= 0.24.2 = py37he6710b0_0- - - - - -paramiko = 2.4.2 = py37_0- - - - - -parso = 0.3.4 = py37_0- - - - - -pathlib2 = 2.3.3 = py37_0- - - - - -容易受骗的人= 0.5.1 = py37_0- - - - - -pexpect = 4.6.0 = py37_0- - - - - -pickleshare = 0.7.5 = py37_0- - - - - -枕头= 5.4.1之前= py37h34e0f95_0- - - - - -皮普= 19.0.3 = py37_0- - - - - -厚度= 3.11 = py37_0- - - - - -prompt_toolkit = 2.0.9 = py37_0- - - - - -protobuf = 3.8.0 = py37he6710b0_0- - - - - -psutil = 5.6.1 = py37h7b6447c_0- - - - - -psycopg2 = 2.7.6.1 = py37h1ba5d50_0- - - - - -ptyprocess = 0.6.0 = py37_0- - - - - -py-xgboost = 0.90 = py37he6710b0_0- - - - - -py-xgboost-cpu = 0.90 = py37_0- - - - - -pyasn1 = 0.4.6 = py_0- - - - - -pycparser = 2.19 = py37_0- - - - - -pygments = 2.3.1 = py37_0- - - - - -pymongo = 3.8.0 = py37he6710b0_1- - - - - -= py37h7b6447c_0 1.3.0 pynacl =版本- - - - - -pyopenssl = 19.0.0 = py37_0- - - - - -pyparsing = 2.3.1 = py37_0- - - - - -pysocks = 1.6.8 = py37_0- - - - - -python = 3.7.3 = h0371630_0- - - - - -python-dateutil = 2.8.0 = py37_0- - - - - -python编辑器的1.0.4 = = py_0- - - - - -pytorch-cpu = 1.1.0 = py3.7_cpu_0- - - - - -pytz = 2018.9 = py37_0- - - - - -pyyaml = 5.1 = py37h7b6447c_0- - - - - -readline = 7.0 = h7b6447c_5- - - - - -= 2.21.0 = py37_0请求- - - - - -s3transfer = 0.2.1 = py37_0- - - - - -scikit-learn = 0.20.3 = py37hd81dba3_0- - - - - -scipy = 1.2.1 = py37h7c811a0_0- - - - - -setuptools = 40.8.0 = py37_0- - - - - -simplejson = 3.16.0 = py37h14c3975_0- - - - - -singledispatch = 3.4.0.3 = py37_0- - - - - -6 = 1.12.0 = py37_0- - - - - -smmap2 = 2.0.5 = py37_0- - - - - -sqlite = 3.27.2 = h7b6447c_0- - - - - -sqlparse = 0.3.0 = py_0- - - - - -statsmodels = 0.9.0 = py37h035aef0_0- - - - - -汇总= 0.8.3 = py37_0- - - - - -tensorboard = 1.13.1 = py37hf484d3e_0- - - - - -tensorflow = 1.13.1 = mkl_py37h54b294f_0- - - - - -tensorflow-base = 1.13.1 = mkl_py37h7ce6ba3_0- - - - - -tensorflow-estimator = 1.13.0 = py_0- - - - - -tensorflow-mkl = 1.13.1 = h4fcabd2_0- - - - - -termcolor = 1.1.0 = py37_1- - - - - -tk = 8.6.8 = hbc83047_0- - - - - -torchvision-cpu = 0.3.0 = py37_cuNone_1- - - - - -tqdm = 4.31.1 = py37_1- - - - - -traitlets = 4.3.2 = py37_0- - - - - -urllib3 = 1.24.1 = py37_0- - - - - -virtualenv = 16.0.0 = py37_0- - - - - -wcwidth = 0.1.7 = py37_0- - - - - -webencodings = 0.5.1 = py37_1- - - - - -websocket-client = 0.56.0 = py37_0- - - - - -werkzeug = 0.14.1 = py37_0- - - - - -轮= 0.33.1 = py37_0- - - - - -打包= 1.11.1 = py37h7b6447c_0- - - - - -xz = 5.2.4 = h14c3975_4- - - - - -yaml = 0.1.7 = had09818_2- - - - - -zlib = 1.2.11 = h7b6447c_3- - - - - -zstd = 1.3.7 = h0b5b093_0- - - - - -皮普:- - - - - -argparse = = 1.4.0- - - - - -databricks-cli = = 0.9.0- - - - - -码头工人= = 4.0.2- - - - - -fusepy = = 2.0.4- - - - - -大猩猩= = 0.3.0- - - - - -horovod = = 0.18.1- - - - - -hyperopt = = 0.1.2.db8- - - - - -matplotlib = = 3.0.3- - - - - -mleap = = 0.8.1- - - - - -mlflow = = 1.2.0- - - - - -nose-exclude = = 0.5.0- - - - - -pyarrow = = 0.13.0- - - - - -querystring-parser = = 4- - - - - -seaborn = = 0.9.0- - - - - -tensorboardx = = 1.8前缀:/砖/ conda / env / databricks-ml

引发包包含Python模块

火花包

Python模块

版本

graphframes

graphframes

0.7.0-db1-spark2.4

spark-deep-learning

sparkdl

1.5.0-db5-spark2.4

tensorframes

tensorframes

0.7.0-s_2.11

R库

R库的完全相同R图书馆砖6.0运行时

Java和Scala库(Scala 2.11集群)

除了Java和Scala库砖6.0运行时,砖运行时6.0毫升包含以下jar:

组ID

工件ID

版本

com.databricks

spark-deep-learning

1.5.0-db5-spark2.4

com.typesafe.akka

akka-actor_2.11

2.3.11

ml.combust.mleap

mleap-databricks-runtime_2.11

0.14.0

ml.dmlc

xgboost4j

0.90

ml.dmlc

xgboost4j-spark

0.90

org.graphframes

graphframes_2.11

0.7.0-db1-spark2.4

org.mlflow

mlflow-client

1.2.0

org.tensorflow

libtensorflow

1.13.1

org.tensorflow

libtensorflow_jni

1.13.1

org.tensorflow

spark-tensorflow-connector_2.11

1.13.1

org.tensorflow

tensorflow

1.13.1

org.tensorframes

tensorframes

0.7.0-s_2.11